On the Forcing Domination and the Forcing Total Domination Numbers of a Graph

J. John ${ }^{1}$ © \cdot V. Sujin Flower ${ }^{2}$

Received: 16 July 2019/Revised: 21 June 2022 / Accepted: 24 June 2022
This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2022

Abstract

Let G be a connected graph with at least two vertices and S a γ_{t}-set of G. A subset $T \subseteq S$ is called a forcing subset for S if S is the unique γ_{t}-set containing T. The forcing total domination number of S, denoted by $f_{\gamma_{t}}(S)$, is the cardinality of a minimum forcing subset of S. The forcing total domination number of G, denoted by $f_{\gamma_{t}}(G)$ is defined by $f_{\gamma_{t}}(G)=\min \left\{f_{\gamma_{t}}(S)\right\}$, where the minimum is taken over all minimum total dominating sets S in G. Some general properties satisfied by this concepts are studied. The forcing total dominating number of certain standard graphs are determined. It is shown that for every pair a, b of integers with $0 \leq a<b$ and $b \geq 1$, there exists a connected graph G such that $f_{\gamma_{t}}(G)=a$ and $\gamma_{t}(G)=b$, where $\gamma_{t}(G)$ is total domination number of G. It is also shown that for every pair a, b of integers with $a \geq 0$ and $b \geq 0$, there exists a connected graph G such that $f_{\gamma_{t}}(G)=a$ and $f_{\gamma}(G)=b$, where $f_{\gamma}(G)$ is the forcing domination number of G.

Keywords Domination number • Total domination number • Forcing domination number \cdot Forcing total domination number

Mathematics Subject Classification 05C69

[^0]
1 Introduction

By a graph $G=(V, E)$, we mean a finite undirected connected graph without loops or multiple edges. The order and size of G are denoted by n and m respectively. For basic definitions and terminologies we refer to [4]. Two vertices u and v are said to be adjacent if $u v$ is an edge of G. The open neighbourhood of a vertex v in a graph G is defined as the set $N_{G}(v)=\{u \in V(G): u v \in E(G)\}$, while the closed neighbourhood of v in G is defined as $N_{G}[v]=N_{G}(v) \cup\{v\}$. For any vertex v in a graph G, the number of vertices adjacent to v is called the degree of v in G, denoted by $\operatorname{deg}_{G}(v)$. If the degree of a vertex is 0 , then it is called an isolated vertex, while if the degree is 1 , it is called an end-vertex. The minimum degree of vertices in G is defined by $\delta(G)=\min \{\operatorname{deg}(v): v \in V(G)\}$. The maximum degree of vertices in G is defined by $\Delta(G)=\max \{\operatorname{deg}(v): v \in V(G)\}$. A vertex v is called a universal vertex if $\operatorname{deg}_{G}(v)=n-1$. For any set S of vertices of G, the induced subgraph $G[S]$ is the maximal subgraph of G with vertex set S.

A subset $S \subseteq V(G)$ is called a dominating set if every vertex $v \in V(G) \backslash S$ is adjacent to a vertex $u \in S$. The domination number $\gamma(G)$ of a graph G denotes the minimum cardinality of such dominating sets of G. A minimum dominating set of a graph G is hence often called a γ-set of G.

A vertex v of a connected graph G is said to be a dominating vertex of G if v belongs to every γ-set of G. If G has a unique γ-set S, then every vertex of S is a dominating vertex of G. A total dominating set of a graph G with no isolated vertex is a set S of vertices of G such that every vertex is adjacent to a vertex in S. The total domination number $\gamma_{t}(G)$ of G is the minimum cardinality of total dominating sets S in G. A minimum total dominating set of a graph G is hence often called a γ_{t}-set of G. These concepts were studied in [2, 3, 5-7].

The forcing set in a graph is a very interesting concept. In the management of a company, the executive committee consists of senior members who have adequate rapport with other members of the company. Some members of the executive committee may sit in other important committees also. Sometimes, restrictions are imposed on members that they can be part of exactly one committee. This precisely leads to the concept of the forcing set. Let S be a γ-set of G. A subset $T \subseteq S$ is called a forcing subset for S if S is the unique γ-set containing T. A forcing subset for S of minimum cardinality is a minimum forcing subset of S. The forcing domination number of S, denoted by $f_{\gamma}(S)$, is the cardinality of a minimum forcing subset of S. The forcing domination number of G, denoted by $f_{\gamma}(G)$, is $f_{\gamma}(G)=\min \left\{f_{\gamma}(S)\right\}$, where the minimum is taken over all γ-sets S in G. The forcing concept was first introduced and studied in minimum dominating sets in [1]. Many authors have studied this forcing concept with respect to several parameters like domination, geodetic, Steiner, hull, detour, monophonic, etc. In this paper we study the forcing concept with respect total domination. Throughout the following G denotes a connected graph with at least two vertices. The following theorem is used in the sequel.

Theorem 1 [1] Let G be a connected graph and W be the set of all dominating vertices of G. Then $f_{\gamma}(G) \leq \gamma(G)-|W|$

2 The Forcing Total Domination Number of a Graph

Definition 1 Let G be a connected graph with at least two vertices and S a γ_{t}-set of G. A subset $T \subseteq S$ is called a forcing subset for S if S is the unique γ_{t}-set containing T. A forcing subset for S of minimum cardinality is a minimum forcing subset of S. The forcing total domination number of S, denoted by $f_{\gamma_{t}}(S)$, is the cardinality of a minimum forcing subset of S. The forcing total domination number of G, denoted by $f_{\gamma_{t}}(G)$ is defined by $f_{\gamma_{t}}(G)=\min \left\{f_{\gamma_{t}}(S)\right\}$, where the minimum is taken over all minimum total dominating sets S in G.

Note 1 A forcing set T of vertices of G uniquely determines a γ_{t}-set containing T.
Example 1 For the graph G given in Fig. 1, $S_{1}=\left\{v_{2}, v_{3}\right\}$ is the unique γ_{t}-set of G so that $\gamma_{t}(G)=2$ and $f_{\gamma_{t}}\left(S_{1}\right)=0$. Also $S_{1}=\left\{v_{2}, v_{3}\right\}, S_{2}=\left\{v_{1}, v_{3}\right\}$ and $S_{3}=\left\{v_{2}, v_{4}\right\}$ are the only three γ-sets of G such that $f_{\gamma}\left(S_{1}\right)=2, f_{\gamma}\left(S_{2}\right)=f_{\gamma}\left(S_{3}\right)=1$ so that $\gamma(G)=2$ and $f_{\gamma}(G)=1$. For the graph G given in Fig. 2, $M_{1}=\left\{v_{2}, v_{3}, v_{4}\right\}$, $M_{2}=\left\{v_{1}, v_{2}, v_{3}\right\}, M_{3}=\left\{v_{1}, v_{4}, v_{6}\right\}$ and $M_{4}=\left\{v_{4}, v_{5}, v_{6}\right\}$ are the only four γ_{t}-sets of G such that $f_{\gamma_{t}}\left(M_{1}\right)=f_{\gamma_{t}}\left(M_{2}\right)=f_{\gamma_{t}}\left(M_{3}\right)=2$ and $f_{\gamma_{t}}\left(M_{4}\right)=1$ so that $\gamma_{t}(G)=3$ and $f_{\gamma_{t}}(G)=1$. Also $M_{5}=\left\{v_{2}, v_{4}\right\}$ is the unique γ-set of G so that $\gamma(G)=2$ and $f_{\gamma}\left(M_{5}\right)=0$.

The next theorem follows immediately from the definition of the total domination number and the forcing total domination number of a connected graph G.

Theorem 2 For any connected graph $G, 0 \leq f_{\gamma_{t}}(G) \leq \gamma_{t}(G)$.
In the following we determine the forcing total domination number of some standard graphs.

Theorem 3 For the path $G=P_{n}(n \geq 4)$,

$$
f_{\gamma_{t}}\left(P_{n}\right)= \begin{cases}0 & \text { if } n=5 \text { or } n \equiv 0(\bmod 4) \\ 1 & \text { if } n \text { is odd and } n \neq 5 \\ 2 & n \equiv 2(\bmod 4)\end{cases}
$$

Proof Let $V\left(P_{n}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$.
Case 1. n is odd.
Subcase 1 (i). Let $n=5$. Then $S=\left\{v_{2}, v_{3}, v_{4}\right\}$ is the unique γ_{t}-set of G, so that $f_{\gamma_{t}}\left(P_{n}\right)=0$.

Fig. 1 A graph with $f_{\gamma_{t}}(G)=0$
and $f_{\gamma}(G)=1$

Fig. 2 A graph with $f_{\gamma t}(G)=1$
and $f_{\gamma}(G)=0$

Subcase 1 (ii). Let $n \neq 5$ and $n=2 m+1$ and $m \geq 3$. Then $S=$ $\left\{v_{1}, v_{2}, v_{5}, v_{6}, v_{9}, v_{10}, \ldots, v_{2 m-1}, v_{2 m}\right\}$ is the unique γ_{t}-set of G containing v_{1} so that $f_{\gamma_{t}}\left(P_{n}\right)=1$.

Case 2. n is even.
Subcase $2(i)$. Let $n \equiv 0(\bmod 4)$
Let $n=4 m$ and $m \geq 1$. Then $S_{1}=\left\{v_{2}, v_{3}, v_{6}, v_{7}, v_{10}, v_{11}, \ldots, v_{4 m-2}, v_{4 m-1}\right\}$ is the unique γ_{t}-set of G so that $\gamma_{\gamma_{t}}\left(P_{n}\right)=0$.

Subcase 2 (ii). Let $n \equiv 2(\bmod 4)$.
Let $n=4 m+2$ and $m \geq 2$. Let S be any γ_{t}-set of G. Then it is easily verified that any singleton subset of S is a subset of another γ_{t}-set of G and so $f_{\gamma_{t}}\left(P_{n}\right) \geq 1$. Then $S_{1}=\left\{v_{1}, v_{2}, v_{5}, v_{6}, v_{8}, v_{9}, \ldots, v_{4 m}, v_{4 m+1}\right\}$ is a γ_{t}-set of G. Since S_{1} is the unique γ_{t}-set of G containing $\left\{v_{1}, v_{4 m+1}\right\}, f_{\gamma_{t}}\left(P_{n}\right)=2$.

Let $n=4 m+2$ and $m=1$. Now $S_{1}=\left\{v_{1}, v_{2}, v_{5}, v_{6}\right\}, S_{2}=\left\{v_{1}, v_{2}, v_{4}, v_{5}\right\}, S_{3}=$ $\left\{v_{2}, v_{3}, v_{4}, v_{5}\right\}$ and $S_{4}=\left\{v_{2}, v_{3}, v_{5}, v_{6}\right\}$ are the only four γ_{t}-sets of G such that $f_{\gamma_{t}}\left(S_{1}\right)=2, f_{\gamma_{t}}\left(S_{2}\right)=2, f_{\gamma_{t}}\left(S_{3}\right)=2, f_{\gamma_{t}}\left(S_{4}\right)=2$ so that $f_{\gamma_{t}}\left(P_{n}\right)=2$.

Theorem 4 For the complete graph $G=K_{n}(n \geq 2), f_{\gamma_{t}}(G)=1$.
Proof Let $V\left(K_{n}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. Then $S_{i}=\left\{v_{i}\right\}(1 \leq i \leq n)$ is a γ_{t}-set of G and so $\gamma_{t}(G)=1$. Since $n \geq 2, G$ has at least two γ_{t}-sets. Then by Theorem $2, f_{\gamma_{t}}(G)=1$.

Theorem 5 For the complete bipartite graph $G=K_{r, s}(1 \leq r \leq s)$, $f_{\gamma_{t}}(G)=\left\{\begin{array}{lc}0 & \text { for } r=1 ; s \geq 2 \\ 2 & \text { for } \quad 1<r \leq s\end{array}\right.$

Proof Let $U=\left\{u_{1}, u_{2}, \ldots, u_{r}\right\}$ and $V=\left\{v_{1}, v_{2}, \ldots, v_{s}\right\}$ be the bipartite sets of G.
Case1. Let $r=1$ and $s \geq 2$. Then $S=\left\{u_{1}\right\}$ is the γ_{t}-set of G. So that $\gamma_{t}(G)=0$.
Case 2. Let $1<r \leq s$. Then $S_{i j}=\left\{u_{i}, v_{j}\right\} \quad(1<i<r, 1<j<s)$ is a γ_{t}-set of G and so $\gamma_{t}(G)=2$. Since any singleton subset of $S_{i j}$ is not a forcing subset of $S_{i j}, f_{\gamma_{t}}(G) \geq 2$. Then by Theorem $2, f_{\gamma_{t}}(G)=2$.

Theorem 6 For the cycle $G=C_{n}(n \geq 4)$,

$$
f_{\gamma_{t}}\left(C_{n}\right)= \begin{cases}2 & \text { if } n \text { is odd or } n \equiv 0(\bmod 4) \\ 4 & \text { if } n \equiv 2(\bmod 4)\end{cases}
$$

Proof Let $V\left(C_{n}\right)=\left\{v_{1}, v_{2}, v_{3}, \ldots, v_{n}, v_{1}\right\}$.
Case 1. n is odd.
Let $n=2 m+1, m \geq 2$. Then any singleton subset of S is a subset of another γ_{t}-set of G and so $f_{\gamma_{t}}\left(C_{n}\right) \geq 1$.

Subcase $1(\mathbf{i}) . n+1 \equiv 0(\bmod 4)$.
Let $n=4 k-1, k \geq 1$. Then $S=\left\{v_{1}, v_{2}, v_{5}, v_{6}, v_{9}, v_{10}, \ldots, v_{4 k-3}, v_{4 k-2}\right\}$ is the unique γ_{t}-set of G containing $\left\{v_{1}, v_{10}\right\}$ so that $f_{\gamma_{t}}\left(C_{n}\right)=2$.

Subcase 1 (ii). $n-1 \equiv 0(\bmod 4)$.
Let $n=4 k+1, k \geq 1$. Then $S=\left\{v_{1}, v_{2}, v_{5}, v_{6}, v_{9}, v_{10}, \ldots, v_{4 k-3}, v_{4 k-2}, v_{4 k+1}\right\}$ is the unique γ_{t}-set of G containing $\left\{v_{2}, v_{4 k+1}\right\}$ so that $f_{\gamma_{t}}\left(C_{n}\right)=2$.

Case 2. n is even.
Subcase 2(i). Let $n \equiv 0(\bmod 4)$.
Let $n=4 k, k \geq 1$. Then $S=\left\{v_{1}, v_{2}, v_{5}, v_{6}, v_{9}, v_{10}, \ldots, v_{4 k-3}, v_{4 k-2}\right\}$ is the unique minimum total dominating set of G containing $\left\{v_{1}, v_{2}\right\},\left\{v_{5}, v_{6}\right\}, \ldots,\left\{v_{4 k-3}, v_{4 k-2}\right\}$ so that $f_{\gamma_{t}}\left(C_{n}\right)=2$.

Subcase $2(i i)$. Let $n \equiv 2(\bmod 4)$.
Let $n=4 k+2, k \geq 1$. Let S be any γ_{t}-set of G. Then any one element or two element or three element subset of S is a subset of another γ_{t}-set of G and so $f_{\gamma_{t}}\left(C_{n}\right) \geq 4$. Now $S_{1}=\left\{v_{1}, v_{2}, v_{5}, v_{6}, v_{9}, v_{10}, \ldots, v_{4 k+1}, v_{4 k+2}\right\}$ is a γ_{t}-set of G. It is easily seen that S_{1} is the unique γ_{t}-set of G containing $\left\{v_{1}, v_{2}, v_{4 k+1}, v_{4 k+2}\right\}$ so that $f_{\gamma_{t}}\left(C_{n}\right)=4$.

3 Some Results on the Forcing Total Domination Number of a Graph

Definition 2 A vertex $v \in G$ is said to be a total dominating vertex of G if v belongs to every γ_{t}-set of G.

Example 2 For the graph G given in Fig. 3, $S_{1}=\left\{v_{1}, v_{2}\right\}$ and $S_{2}=\left\{v_{2}, v_{4}\right\}$ are the only two γ_{t}-sets of G. Since ν_{2} belongs to every γ_{t}-set of G, v_{2} is the unique total dominating vertex of G.

The proofs of the following theorems are straight forward so we omit the proofs.
Theorem 7 Let G be a connected graph. Then
(i) $\quad f_{\gamma_{t}}(G)=0$ if and only if G has a unique γ_{t}-set.

Fig. 3 A graph with total dominating vertex v_{2}

(ii) $f_{\gamma_{t}}(G)=1$ if and only if G has at least two γ_{t}-sets, one of which is a unique γ_{t}-set containing one of its elements, and
(iii) $f_{\gamma_{t}}(G)=\gamma_{t}(G)$ if and only if no γ_{t}-set of G is the unique γ_{t}-set containing any of its proper subsets.

Theorem 8 Let G be a connected graph and let \Im be the set of relative complements of the minimum forcing subsets in their respective minimum total dominating sets in G. Then $\cap_{F \in \Im} F$ is the set of total dominating vertices of G.

Theorem 9 Let G be a connected graph and W be the set of all total dominating vertices of G. Then $f_{\gamma_{t}}(G) \leq \gamma_{t}(G)-|W|$.

Theorem 10 Let G be a connected graph with at least one universal vertex. Then
(i) $f_{\gamma_{t}}(G)=0$ if and only if G contains exactly one universal vertex.
(ii) $f_{\gamma_{t}}(G)=1$ if and only if G contains at least two universal vertices.

Theorem 11 Let G be a connected graph with $\gamma_{t}(G)=2$ and $c(G)=4$, where $c(G)$ is the length of a smallest cycle in G.
(i) Let $\Delta(G)=2$. Then $f_{\gamma_{t}}(G)=2$ if and only if $G=C_{4}$.
(ii) Let $\delta(G)=1$. Then $f_{\gamma_{t}}(G)=1$ if and only if G is the graph given Fig. 4.

Proof Let $C: u, v, w, z, u$ be a smallest cycle in G. Since $\gamma_{t}(G)=2, C$ is the only smallest cycle in G.
(i) Let $G=C_{4}$. Then by Theorem $6, f_{\gamma_{t}}(G)=2$. Conversely, let $f_{\gamma_{t}}(G)=2$. Let S be a γ_{t}-set of G. Since $\gamma_{t}(G)=2, G[S]$ is connected. Also since $\gamma_{t}(G)=f_{\gamma_{t}}(G)=2$, by Theorem 7, no γ_{t}-set containing any of its proper subsets. Since $\gamma_{t}(G)=2$ and $\Delta(G)=2, S_{1}=\{u, v\}, S_{2}=\{v, w\}, S_{3}=\{w, x\}$ and $S_{4}=\{x, u\}$ are the only four γ_{t}-sets of G. Also since $c(G)=4, u w, v x \notin E(G)$. If any one of the vertices u, v, w, x is a cut vertex of G, then any two $S_{i}(1 \leq i \leq 4)$ are the only γ_{t}-sets of G so that $f_{\gamma_{t}}(G)=1$, which is a contradiction. Therefore G has no cut vertices. Hence it follows that $G=C_{4}$.
(ii) Let G be the graph given in the Fig. 4. Then $S_{1}=\left\{v_{1}, v_{2}\right\}$ and $S_{2}=\left\{v_{2}, v_{3}\right\}$ are the only two γ_{t}-sets of G so that $f_{\gamma_{t}}(G)=1$. Conversely, let $f_{\gamma_{t}}(G)=1$. Let S be a

Fig. 4 A graph with $\delta(G)=1$
and $f_{\gamma_{t}}(G)=0$

G
γ_{t}-set of G. Since $f_{\gamma_{t}}(G)=1$, by Theorem 7 (ii), G has at least two γ_{t}-sets such that one of which is the unique γ_{t}-set containing one of its elements. Since $\gamma_{t}(G)=2$ and $G[S]$ is connected, $S_{1}=\{u, v\}$ and $S_{2}=\{v, w\}$ are the only two γ_{t}-sets of G. Since $\gamma_{t}(G)=2, G$ has no universal vertices. Also since $\delta(G)=1$, there exists $x \in V$ such that x is adjacent to only the vertex v. Let us assume that $\operatorname{deg}(x)=1$. Therefore v is a cut vertex of G. Suppose that there exists $y \neq x$ such that $v y \in E(G)$. Since $c(G)=4, y u, y w, y z, x y \notin E(G)$. Therefore G is the graph given in Fig. 4, which satisfies the requirements of this theorem.

4 Realization Results

In this section, we present some graphs from which various graphs arising in later theorem are generated using identification.

Definition 3 Let $P_{i}: u_{i}, v_{i}, w_{i}(1 \leq i \leq a)$ be a copy of path on three vertices. Let U_{a} be the graph obtained from $P_{i}(1 \leq i \leq a)$ by adding a new vertex x and join x with each u_{i} and $w_{i}(1 \leq i \leq a)$.

Definition 4 Let $Q_{i}: x_{i}, y_{i}, z_{i}, x_{i}(1 \leq i \leq b)$ be a copy of cycle with three vertices. Let $V_{i}(1 \leq i \leq b)$ be a graph from $Q_{i}(1 \leq i \leq b)$ by introducing new vertices h_{i} and q_{i} and introducing the edges $x_{i} z_{i}, x_{i} h_{i}, y_{i} h_{i}$ and $z_{i} q_{i} .(1 \leq i \leq b)$.

Definition 5 Let $C_{i}: p_{i}, q_{i}, r_{i}, s_{i}, t_{i}, f_{i}, p_{i}(1 \leq i \leq c)$ be a copy of cycle with six vertices. Let Z_{c} be a graph obtained from $C_{i}(1 \leq i \leq c)$ by identifying s_{i-1} of C_{i-1} with p_{i} of $C_{i}(2 \leq i \leq c)$.

In view of Theorem 2, we have the following realization result.
Theorem 12 For every pair a, b of integers with $0 \leq a<b$ and $b \geq 1$, there exists a connected graph G such that $f_{\gamma_{t}}(G)=a$ and $\gamma_{t}(G)=b$.

Proof Case 1. $a=0, b \geq 1$.
Subcase 1(i). $a=0, b=1$. Then the path $G=P_{3}$ satisfies the requirements of this theorem.

Subcase 1(ii). $a=0, b=2$. Let the cycle $C_{5}=\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{1}\right\}$. Let G be the graph obtained from C_{5} by introducing the edge $v_{1} v_{4}$. Then $S=\left\{v_{1}, v_{4}\right\}$ is the unique γ_{t}-set of G so that $\gamma_{\gamma_{t}}(G)=0$ and $\gamma_{t}(G)=2$.

Subcase 1(iii). $a=0, b \geq 3$. Let G be the graph obtained from $K_{1, b-1}$ by subdividing each edge. Then $V\left(K_{1, b-1}\right)$ is the unique γ_{t}-set of G so that $f_{\gamma_{t}}(G)=0$ and $\gamma_{t}(G)=b$.

Case 2. $0<a<b$.
Subcase 2(i). $b=a+1$. Consider the graph $G=U_{a}$. Let $H_{i}=\left\{u_{i}, w_{i}\right\}$ $(1 \leq i \leq a)$. Then every total dominating set of G contains the vertex x and also contains at least one element from each $H_{i}(1 \leq i \leq a)$ and so $\gamma_{t}(G) \geq a+1$. Let $S=\{x\} \cup\left\{u_{1}, u_{2}, \ldots, u_{a}\right\}$. Then S is a total dominating set of G so that $\gamma_{t}(G)=a+1$. Next we show that $f_{\gamma_{t}}(G)=a$. By Theorem 9, $f_{\gamma_{t}}(G) \leq \gamma_{t}(G)-|x|=a+1-1=a$. Now since $\gamma_{t}(G)=a+1$ and every total
dominating set of G contains x, it is easily seen that every γ_{t}-set of G is of the form $S_{1}=\{x\} \cup\left\{c_{1}, c_{2}, \ldots, c_{a}\right\}$, where $c_{i} \in H_{i}(1 \leq i \leq a)$. Let T be any proper subset of S_{1} with $|T|<a$. Then there exists some i such that $T \cap H_{i}=\phi$, which shows that $f_{\gamma_{t}}(G)=a$.

Subcase 2(ii) $b \neq a+1$. Let $P_{i}^{\prime}: h_{i}, q_{i}(1 \leq i \leq b-a-1)$ be a copy path of order 2. Let G be the graph obtained from U_{a} and $P_{i}^{\prime}(1 \leq i \leq b-a-1)$ by joining the vertex x with each $h_{i}(1 \leq i \leq b-a-1)$. First we claim that $\gamma_{t}(G)=b$. Let $H_{i}=$ $\left\{u_{i}, w_{i}\right\}(1 \leq i \leq a)$. Let $X=\left\{x, h_{1}, h_{2}, \ldots, h_{b-a-1}\right\}$. It is easily observed that X is a subset of every total dominating set of G and every total dominating set of G contains at least one element from each $H_{i}(1 \leq i \leq a)$ and so $\gamma_{t}(G) \geq b-a+a=b$. Let $S_{2}=X \cup\left\{u_{1}, u_{2}, \ldots, u_{a}\right\}$. Then S_{2} is a total dominating set of G so that $\gamma_{t}(G)=b$. Next we show that $f_{\gamma_{t}}(G)=a$. By Theorem 9, $f_{\gamma_{t}}(G) \leq \gamma_{t}(G)-|X|=b-(b-a)=a$. Now since $\gamma_{t}(G)=b$ and every total dominating set of G contains X, it is easily seen that every γ_{t}-set of G is of the form $S_{3}=X \cup\left\{c_{1}, c_{2}, \ldots, c_{a}\right\}$, where $c_{i} \in H_{i}(1 \leq i \leq a)$. Let T be any proper subset of S_{3} with $|T|<a$. Then it is clear that there exists some i such that $T \cap H_{i}=\phi$, which shows that $f_{\gamma_{t}}(G)=a$.

By Theorem 4, for the complete graph $G=K_{n}(n \geq 2), f_{\gamma_{t}}(G)=\gamma_{t}(G)=1$. By Theorem 5, for the complete bipartite graph $G=K_{r, s}(2 \leq r \leq s), f_{\gamma_{t}}(G)=\gamma_{t}(G)=2$. Also from Theorem 6, for the cycle $G=C_{6}, f_{\gamma_{t}}(G)=\gamma_{t}(G)=4$. So, we leave the following as a open question.

Problem 1 For every integer $a \geq 1$, does there exist a connected graph G such that $f_{\gamma_{t}}(G)=\gamma_{t}(G)=a$?

For a connected graph G, we know that $\gamma(G) \leq \gamma_{t}(G)$. But from Example 1, we observed that there is no relationship between $f_{\gamma}(G)$ and $f_{\gamma_{t}}(G)$. In the following we give some realization results.

Theorem 13 For every integer $a \geq 0$, there exists a connected graph G such that $f_{\gamma}(G)=f_{\gamma_{t}}(G)=a$.

Proof Case 1. $a=0, b=0$. Let $C_{6}=\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}, v_{1}\right\}$. Let G be the graph obtained from C_{6} by introducing the vertex v_{7} and the edges $v_{1} v_{7}$ and $v_{1} v_{4}$. Then $S=\left\{v_{1}, v_{4}\right\}$ is the unique γ-set as well as the unique γ_{t}-set of G so that $f_{\gamma_{t}}(G)=f_{\gamma}(G)=0$.

Case 2. $a \geq 1$.
Subcase 2(i). $a=1$. Then the graph G given in Fig. 3 satisfies this requirements of this theorem.

Subcase 2(ii). $a \geq 2$. Let $G=U_{a}(a \geq 2)$. First we show that $\gamma(G)=a$. Let $H_{i}=\left\{u_{i}, w_{i}\right\}(1 \leq i \leq a)$. Then every dominating set of G contains the vertexx x and contains at least one element from each $H_{i}(1 \leq i \leq a)$ and so $\gamma(G) \geq a+1$. Let $S_{1}=\{x\} \cup\left\{u_{1}, u_{2}, \ldots, u_{a}\right\}$. Then S_{1} is a dominating set of G so that $\gamma(G)=a+1$. Next we show that $f_{\gamma}(G)=a$. By Theorem $1, f_{\gamma}(G) \leq \gamma(G)-1=a+1-1=a$. Now since $\gamma(G)=a+1$ and every dominating set of G contains x and contains at least one element from each $H_{i}(1 \leq i \leq a)$, it is easily seen that every γ-set of G is of
the form $S_{2}=\{x\} \cup\left\{c_{1}, c_{2}, \ldots, c_{a}\right\}$, where $c_{i} \in H_{i}(1 \leq i \leq a)$. Let T be any proper subset of S_{2} with $|T|<a$. Then it is clear that there exists some i such that $T \cap H_{i}=$ ϕ, which shows that $f_{\gamma}(G)=a$.

Next we claim that $\gamma_{t}(G)=a+1$. Now every total dominating set of G contains the vertex x and contains at leat one element from each $H_{i}(1 \leq i \leq a)$ and so $\gamma_{t}(G) \geq a+1$. Now $S_{3}=\{x\} \cup\left\{u_{1}, u_{2}, \ldots, u_{a}\right\}$ is a total dominating set of G so that $\gamma_{t}(G)=a+1$. Next we show that $f_{\gamma_{t}}(G)=a$. By Theorem 9, $f_{\gamma_{t}}(G) \leq \gamma_{t}(G)-1=a+1-1=a$. Now since $\gamma_{t}(G)=a+1$ and every total dominating set of G contains x and contains at least one element from each H_{i} $(1 \leq i \leq a)$, every γ_{t}-set of G is of the form $S_{4}=\{x\} \cup\left\{c_{1}, c_{2}, \ldots, c_{a}\right\}$, where $c_{i} \in H_{i}$ $(1 \leq i \leq a)$. Let T be any proper subset of S_{4} with $|T|<a$. Then there exists some i such that $T \cap H_{i}=\phi$, which shows that $f_{\gamma_{t}}(G)=a$.

Theorem 14 For every pair a, b of non negative integers, there exists a connected graph G such that $f_{\gamma_{t}}(G)=a$ and $f_{\gamma}(G)=b$.

Proof Case 1. $0 \leq a \leq b$
Subcase 1(i). $0 \leq a=b$. Then the graph G constructed in Theorem 13 satisfies the requirements of this theorem.

Subcase 1(ii). $a=0, b=1$. Then the graph G constructed in Subcase 1(i) of the Theorem 12 satisfies the requirement of this theorem.

Subcase 1(iii). $a=0, b \geq 2$. Let G be the graph obtained from the copy V_{i} $(1 \leq i \leq b)$ by adding a new vertex x and introducing the edges $x h_{i}, x y_{i}, x q_{i}$ $(1 \leq i \leq b)$. First we show that $\gamma(G)=b+1$. Let $T_{i}=\left\{x_{i}, y_{i}, z_{i}\right\}(1 \leq i \leq b)$. Then every dominating set of G contains the vertex x and contains at least one vertex from each $T_{i}(1 \leq i \leq b)$ and so $\gamma(G) \geq b+1$. Let $S=\left\{x, y_{1}, y_{2}, \ldots, y_{b}\right\}$. Then S is a γ-set of G so that $\gamma(G)=b+1$. Next we show that $f_{\gamma}(G)=b$. By Theorem 1, $f_{\gamma}(G) \leq \gamma(G)-1=b+1-1=b$. Now since $\gamma(G)=b+1$ and every dominating set of G contains x, it is easily seen that every γ-set of G is of the form $S_{1}=\{x\} \cup\left\{c_{1}, c_{2}, \ldots, c_{b}\right\}$, where $c_{i} \in T_{i}(1 \leq i \leq b)$. Let T be any proper subset of S_{1} with $|T|<b$. Then it is clear that there exists some i such that $T \cap T_{i}=\phi$, which shows that $f_{\gamma}(G)=b$. Next we prove that $\gamma_{t}(G)=b+1$ and $f_{\gamma_{t}}(G)=0$. Now every γ_{t}-set of G contains the vertex x and contains only the vertex y_{i} from each T_{i} $(1 \leq i \leq b)$ and so $\gamma_{t}(a) \geq b+1$. Then $S=\left\{x, y_{1}, y_{2}, . . y_{b}\right\}$ is the unique γ_{t}-set of G so that $\gamma_{t}(G)=b+1$ and $f_{\gamma_{t}}(G)=0$.

Subcase 1(iv). $0<a<b$. Let G be the graph obtained from U_{a} and the copy V_{i} $(1 \leq i \leq b-a)$ by introducing the edges $x h_{i}, x y_{i}$ and $x q_{i}(1 \leq i \leq b-a)$. Let $H_{i}=$ $\left\{u_{i}, w_{i}\right\}(1 \leq i \leq a)$ and $T_{i}=\left\{x_{i}, y_{i}, z_{i}\right\}(1 \leq i \leq b-a)$. Then every dominating set of G contains the vertex x and at least one element from each $H_{i}(1 \leq i \leq a)$ and contains at least one element from each $T_{i}(1 \leq i \leq b-a)$ and so $\gamma(G) \geq b-a+a+1=b+1$. Now $S_{2}=\{x\} \cup\left\{u_{1}, u_{2}, \ldots, u_{a}\right\} \cup\left\{y_{1}, y_{2}, \ldots, y_{b-a}\right\}$ is a dominating set of G so that $\gamma(G)=b+1$. Next we show that $f_{\gamma}(G)=b$. By Theorem $1, f_{\gamma}(G) \leq \gamma(G)-1=b+1-1=b$. Now since $\gamma(G)=b+1$ and every dominating set of G contains x, every γ-set of G is of the form $S_{3}=\{x\} \cup\left\{c_{1}, c_{2}, \ldots, c_{a}\right\} \cup\left\{d_{1}, d_{2}, \ldots, d_{b-a}\right\}$, where $c_{i} \in H_{i}(1 \leq i \leq a)$ and $d_{i} \in$ $T_{i}(1 \leq i \leq b-a)$. Let T be any proper subset of S_{3} with $|T|<b$. Then it is clear that
there exist some i and j such that $T \cap H_{i} \cap T_{j}=\phi$, which shows that $f_{\gamma}(G)=b$.
Next we show that $\gamma_{t}(G)=b+1$. Let $X=\left\{x, y_{1}, y_{2}, \ldots, y_{b-a}\right\}$. Then X is a subset of every total dominating set of G and every total dominating set of G contains at least one vertex from each $H_{i}(1 \leq i \leq a)$ and so $\gamma_{t}(G) \geq b-a+a+1=b+1$. Let $S_{4}=X \cup\left\{u_{1}, u_{2}, \ldots, u_{a}\right\}$. Then S_{4} is a total dominating set of G so that $\gamma_{t}(G)=b+1$. Next we show that $f_{\gamma_{t}}(G)=a$. By Theorem $9, f_{\gamma_{t}}(G) \leq \gamma_{t}(G)-|X|$ $=b+1-(b-a+1)=a$. Now since $\gamma_{t}(G)=b+1$ and every total dominating set of G contains X, every γ_{t}-set of G is of the form $S_{5}=X \cup\left\{c_{1}, c_{2}, \ldots, c_{a}\right\}$, where $c_{i} \in H_{i}$. Let T be any proper subset of G with $|T|<a$. Then there exists some i such that $T \cap H_{i}=\phi$, which shows that $f_{\gamma_{t}}(G)=a$.

Case 2. $0 \leq b \leq a$
Subcase 2(i). $0 \leq b=a$. Then the graph G constructed in Theorem 13 satisfies the requirements of this theorem.

Subcase 2(ii). $b=0, a=1$. Then the graph G given in Fig. 2 satisfies the requirements of this theorem.

Subcase 2(iii). $b=0, a \geq 2$. Let Q be a graph obtained from C_{6} by introducing the edge $v_{1} v_{4}$. Let H be the graph obtained from Z_{a} and Q by identifying the vertex s_{a} of Z_{a} and v_{1} of Q. Let G be a graph obtained from H by introducing the vertex u and v and the edges $p_{1} u$ and $p_{1} v$. First we show that $\gamma(G)=a+2$ and $f_{\gamma}(G)=0$. Let $X=\left\{p_{1}, p_{2}, p_{3}, \ldots, p_{a}, v_{1}, v_{4}\right\}$. Then X is a subset of every dominating set of G and so $\gamma(G) \geq a+2$. Since X is the unique γ-set of $G, \gamma(G)=b+2$ and $f_{\gamma}(G)=0$. Next we claim that $\gamma_{t}(G)=2 b+2$. Let $J_{i}=\left\{f_{i}, q_{i}\right\} \quad(1 \leq i \leq a)$. Let $X=\left\{p_{1}, p_{2}, p_{3}, \ldots, p_{b}, v_{1}, v_{5}\right\}$. Then X is a susbet of every total dominating set of G. Also it is easily seen that every total dominating set of G contains at least one vertex from each $J_{i}(1 \leq i \leq b)$ and so $\gamma_{t}(G) \geq 2 a+2$. Let $S_{6}=X \cup\left\{f_{1}, f_{2}, \ldots, f_{a}\right\}$. Then S_{6} is a total dominating set of G so that $\gamma_{t}(G)=2 a+2$. Next we claim that $f_{\gamma_{t}}(G)=a$. By Theorem $9, f_{\gamma_{t}}(G) \leq \gamma_{t}(G)-|X|=2 a+2-(a+2)=a$. Now since $\gamma_{t}(G)=2 a+2$ and every total dominating set of G contains X, every γ_{t}-set of G of the S_{7} is of the form $S_{7}=W \cup\left\{c_{1}, c_{2}, \ldots, c_{a}\right\}$, where $c_{i} \in J_{i}(1 \leq i \leq a)$. Let T be any proper subset of S_{7} with $|T|<a$. Then there exists some i such that $T \cap J_{i}=\phi$, which shows that $f_{\gamma_{t}}(G)=a$.

Subcase 2(iv). $0<b<a$ Let H be the graph obtained from Z_{a-b} and Q by identifying the vertex s_{a-b} of Z_{a-b} and v_{1} of Q. Let G be the graph obtained from H and U_{b} by introducing new vertices y, u and v and the edges $y x, p_{1} u$ ans $p_{1} v$. First we claim that $f_{\gamma}(G)=b$ and let $H_{i}=\left\{u_{i}, w_{i}\right\} \quad(1 \leq i \leq b)$. Let $X=\left\{x, p_{1}, p_{2}, \ldots, p_{a-b}, v_{1}, v_{4}\right\}$. Then any γ-set is of the form $S_{8}=X \cup\left\{c_{1}, c_{2}, \ldots, c_{b}\right\}$, where $c_{i} \in H_{i}(1 \leq i \leq b)$. Then as in earlier cases it can be seen that $f_{\gamma}(G)=b$. Next we show that $f_{\gamma_{t}}(G)=a$. Let $J_{i}=\left\{f_{i}, q_{i}\right\}$ $(1 \leq i \leq a-b)$. Then any γ_{t}-set of G is of the form is of the form $W=X \cup\left\{c_{1}, c_{2}, \ldots, c_{b}\right\} \cup\left\{d_{1}, d_{2}, \ldots, d_{a-b}\right\}$, where $c_{i} \in H_{i}(1 \leq i \leq b)$ and $d_{i} \in J_{i}$ $(1 \leq i \leq a-b)$. Then as in earlier cases it can be easily seen that $f_{\gamma_{t}}(G)=a$.

Remark 1 For the graph G given in Fig. 5, $S=\left\{v_{2}, v_{4}\right\}$ is the unique γ-set of G so that $\gamma(G)=2$ and $f_{\gamma}(G)=0$. Also $S_{1}=\left\{v_{2}, v_{3}, v_{4}\right\}$ and $S_{2}=\left\{v_{2}, v_{4}, v_{5}\right\}$ are the only two γ_{t}-sets of G so that $\gamma_{t}(G)=3$ and $f_{\gamma_{t}}(G)=1$. Thus

Fig. 5 A graph with $f_{\gamma}(G)=0$
and $f_{\gamma_{t}}(G)=1$

$f_{\gamma}(G)<f_{\gamma_{t}}(G)<\gamma(G)<\gamma_{t}(G)$. For the path $G=P_{7}$, by Theorem $3, \gamma_{t}(G)=4$ and $f_{\gamma_{t}}(G)=1$. Also $\gamma(G)=3$ and $f_{\gamma}(G)=2$. Thus $f_{\gamma_{t}}(G)<f_{\gamma}(G)<\gamma(G)<\gamma_{t}(G)$. For the cycle $G=C_{6}$, by the Theorem $6, \gamma_{t}(G)=f_{\gamma_{t}}(G)=4$. Also $\gamma(G)=3, f_{\gamma}(G)=1$, Thus $f_{\gamma}(G)<\gamma(G)<f_{\gamma_{t}}(G)=\gamma_{t}(G)$.

So we leave the following as an open question.
Problem 2 For every four positive integers a, b, c, d with $a \geq 0, b \geq 0,1 \leq c \leq d$, $0 \leq b \leq d$ and $d \geq 1$, does there exist a connected graph G such that $f_{\gamma}(G)=a$ and $f_{\gamma_{t}}(G)=b, \gamma(G)=c, \gamma_{t}(G)=d$?

5 The Upper Forcing Total Domination Number of a Graph

In [8], Zhang introduced the concept of the upper forcing geodetic number of a graph. In a similar manner we define the upper forcing total domination number of a graph as follows.

Definition 6 Let G be a connected graph with at least two vertices and S a γ_{t}-set of G. A forcing subset $T \subseteq S$ uniquely determines S containing T. A forcing subset for S of minimum cardinality is a minimum forcing subset of S. The forcing total domination number of S, denoted by $f_{\gamma_{t}}(S)$, is the cardinality of a minimum forcing subset of S. The forcing total domination number of G, denoted by $f_{\gamma_{t}}(G)$ is defined by $f_{\gamma_{t}}(G)=\min \left\{f_{\gamma_{t}}(S)\right\}$, where the minimum is taken over all minimum total dominating sets S in G and the upper forcing total domination number of G, denoted by $f_{\gamma_{t}}^{+}(G)=\max \left\{f_{\gamma_{t}}(S)\right\}$, where the maximum is taken over all γ_{t}-sets S in G.

The next theorem follows immediately from the definition of the total domination, forcing total domination and the upper forcing total domination numbers of a graph G.

Theorem 15 For every connected graph $G, 0 \leq f_{\gamma_{t}}(G) \leq f_{\gamma_{t}}^{+}(G) \leq \gamma_{t}(G)$ and $\gamma_{t}(G)=3$

Remark 2 For the graph G given Fig. 2, $f_{\gamma_{t}}(G)=1, f_{\gamma_{t}}^{+}(G)=2$ and $\gamma_{t}(G)=3$. So, we leave the following as an open question.

Problem 3 For any three positive integers a, b and c with $0 \leq a \leq b \leq c$ and $c \geq 1$ does, there exists a connected graph G with $f_{\gamma_{t}}(G)=a, f_{\gamma_{t}}^{+}(G)=b$ and $\gamma_{t}(G)=c$?

Acknowledgements The authors would like to thank anonymous reviewers for their valuable and constructive comments.

Funding The authors declare no funding for this article.

Declarations

Conflict of interest The authors declare no conflict of interest.

References

1. Chartrand, G., Galvas, H., Harary, F., Vandell, R.C.: The forcing domination number of a graph. J. Comb. Math. Comb. Comput. 25, 161-174 (1997)
2. Cochaye, E.J., Dawes, R.M., Hedetnieni, S.T.: Total domination in graphs. Networks 10, 211-219 (1980)
3. Favaron, O., Henning, M.A., Mynhart, C., Puech, J.: Total domination in graphs with minimum degree three. J. Graph Theory 34, 9-19 (2000)
4. Haynes, T.W., Hedetniemi, S.T., Slater, P.J.: Fundamentals of Domination in Graphs. Marcel Dekker, New York (1998)
5. Henning, M.A., Yeo, A.: A new upper bound on the total domination number of a graph. Electron. J. Comb. 14, 1-10 (2007)
6. Henning, M.A.: A survey of selected recent results on total domination in graphs. Discret. Math. 309, 32-63 (2009)
7. Lam, P.C.B., Wei, B.: On the total domination number of graphs. Utilitas Mathematica 72, 223-240 (2007)
8. Zhang, P.: The upper forcing geodetic number of a graph. Ars Comb. 62, 3-15 (2012)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

[^0]: J. John
 john@gcetly.ac.in
 V. Sujin Flower
 sujinflower@gmail.com
 1 Department of Mathematics, Government College of Engineering, Tirunelveli 627 007, India
 2 Department of Mathematics, Holy Cross College (Autonomous), Nagercoil 629 004, India

